【有奖征文】EdgeX + OpenVINO 实现边缘智能 AI 应用
架构设计图
本系统设计硬件设计采用 Intel® CPU(iGPU) + GPU[可选] ,CPU 必须为 Intel® 架构,独立 GPU 可根据实际需要灵活扩展。
本系统全部采用 Docker 微服务运行,描述如下:
图例中,① 作为 AI 推理服务器,运行 OpenVINO™ Model Server 容器;
图例中,② 作为流媒体服务器,负责流媒体的编解码,实时查看视频流,运行亿琪软件产品 YiMEDIA,同样也采用容器运行;
图例中,③ 作为边缘计算,运行 EdgeXFoundry 容器,负责整个系统的协调和业务驱动;
应用配置
硬件环境
软件环境
采用 Ubuntu 22.04 作为 Docker 宿主主机,并且已经成功完成 Docker 运行环境的安装和测试。
# uname -a
Linux YiFUSION-N100 6.5.0-21-generic #21~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 9 13:32:52 UTC 2 x86_64 x86_64 x86_64 GNU/Linux
# l**_release -a
Distributor ID: Ubuntu
Description: Ubuntu 22.04.3 LTS
Release: 22.04
Codename: jammy
采用 CPU 内置 iGPU 作为推理
# ll /dev/dri/
total 0
drwxr-xr-x 3 root root 100 2月 23 17:34 ./
drwxr-xr-x 20 root root 4620 2月 23 20:19 ../
crw-rw----+ 1 root video 226, 0 2月 23 20:58 card0
crw-rw----+ 1 root render 226, 128 2月 23 17:39 renderD128
OpenVINO Model Server 服务
模型库配置:
name: 模型名称
base_path: 模型文件路径
target_device: 目标推理设备
layout: 需要的图片格式(可选)
# more models/config.json
{
"model_config_list":[
{
"config":{
"name":"ssdlite_mobilenet_v2",
"base_path":"/models/ssdlite_mobilenet_v2",
"target_device": "GPU"
}
},
]
}
既可以用云存储作为模型库存放位置,也可以使用本地磁盘作为模型库存放位置(本例子使用)。
一级目录是对应的模型名称
二级目录是模型的版本,比如:1,2...
xml 是 OpenVINO™ 模型库相关配置,bin 是 OpenVINO™ 模型 IR 文件
models 目录结构如下:
model****r/>├── ssdlite_mobilenet_v2
│ └── 1
│ ├── coco_91cl_bkgr.txt
│ ├── ssdlite_mobilenet_v2.bin
│ ├── ssdlite_mobilenet_v2.mapping
│ └── ssdlite_mobilenet_v2.xml
启动 Model Server 容器
docker run -d \
--name model_server \
--network edgex_edgex-network \
--device /dev/dri \
-v $(pwd)/models:/models \
-p 9000:9000 \
-p 8000:8000 \
openvino/model_server:latest-gpu \
--config_path /models/config.json \
--port 9000 \
--rest_port 8000 \
--log_level DEBUG
通过 Kserve RESTful API 访问 OVMS 工作状态,这里访问已经启动的模型:ssdlite_mobilenet_v2。
curl http://192.168.198.8:8000/v1/config
{
"ssdlite_mobilenet_v2": {
"model_version_status": [
{
"version": "1",
"state": "AVAILABLE",
"status": {
"error_code": "OK",
"error_message": "OK"
}
}
]
}
}
同样通过 Kserve RESTful API 可以访问模型的详细输入和输出参数,主要是 inputs 和 outputs 里面的 dim。
inputs: 需要输入图片名称是 image_tensor,格式是 DT_INT8,可以用 byte。图片纬度是 [1,300,300,3], width:300, height:300, color:3;
outputs: 输出格式是一个四维矩阵 [1,1,100,7],只需要后面两个维度:rows:100, cols:7;
{
"modelSpec": {
"name": "ssdlite_mobilenet_v2",
"signatureName": "",
"version": "1"
},
"metadata": {
"signature_def": {
"@type": "type.googleapis.com/tensorflow.serving.SignatureDefMap",
"signatureDef": {
"serving_default": {
"inputs": {
"image_tensor": {
"dtype": "DT_UINT8",
"tensorShape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "300",
"name": ""
},
{
"size": "300",
"name": ""
},
{
"size": "3",
"name": ""
}
],
"unknownRank": false
},
"name": "image_tensor"
}
},
"outputs": {
"detection_boxes": {
"dtype": "DT_FLOAT",
"tensorShape": {
"dim": [
{
"size": "1",
"name": ""
},
{
"size": "1",
"name": ""
},
{
"size": "100",
"name": ""
},
{
"size": "7",
"name": ""
}
],
"unknownRank": false
},
"name": "detection_boxes"
}
},
"methodName": "",
"defaults": {
}
}
}
}
}
}
笔者采用亿琪软件公司自己的流媒体服务器软件:YiMEDIA,来实现视频流的编解码。
当然,用户也可以使用一些其他框架来支撑,比如:
SRS(Simple Realtime Server)
go2rtc
MediaMTX (formerly rtsp-simple-server)
EdgeX Foundry 服务
根据 EdgeXFoundry edgex-compose 仓库手册,创建自己的 EdgeX 运行环境。本测试案例,只需要核心服务和 mqtt-broker 服务即可。
Device Service for ONVIF Camera 是否需要使用,取决于是否由 EdgeX 来管理网络摄像头(IPC),本例中暂时未启用此服务,采用手动设置。
这是一个系列微服务,包含了各种算法库,支持算法调用和推理。
SSDLITE_MOBILENET_V2:提交一张图片,返回目标识别结果;
deviceList:
- name: OpenVINO-Object-Detection
profileName: OpenVINO-Device
description: Example of OpenVINO Device
labels: [AI]
protocols:
ovms:
Host: 192.168.198.8
Port: 9000
Model: ssdlite_mobilenet_v2
Version: 1
Uri: rtsp://192.168.123.12:18554/test
Snapshot: false
Record: false
Score: 0.3
这是一个设备服务基础配置例子,用户可根据实际业务需求配置:
Host: OVMS 服务地址
Port: OVMS 服务端口
Model: 模型名称
Version: 模型版本
Uri: IPC 摄像头流地址
Snapshot: 是否建立快照
Record: 是否记录推理视频
Score: 推理结果最低信任度
以下是完整的 EdgeX metadata:
{
"apiVersion": "v3",
"statusCode": 200,
"totalCount": 1,
"devices": [
{
"created": 1708691437289,
"modified": 1708693207326,
"id": "6b02c540-eeae-4b61-b741-cdefcf93fd09",
"name": "OpenVINO-Object-Detection",
"description": "Example of OpenVINO Device",
"adminState": "UNLOCKED",
"operatingState": "UP",
"labels": ["AI"],
"serviceName": "device-openvino-ssdlite-mobilenet-v2",
"profileName": "OpenVINO-Device",
"autoEvents": [{}],
"protocols": {
"ovms": {
"Host": "192.168.198.8",
"Model": "ssdlite_mobilenet_v2",
"Port": 9000,
"Record": false,
"Snapshot": false,
"Uri": "rtsp://192.168.123.12:18554/test",
"Version": 1,
"Score": 0.3
}
}
}
]
}
验证配置
所有的容器都运行成功后,可看到类似以下的结果:
# docker ps --format 'table {{.Image}}\t{{.Names}}'
IMAGE NAMES
①
openvino/model_server:latest-gpu model_server
②
yiqisoft/YiMEDIA yimedia
③
edgexfoundry/device-openvino-ssdlite-mobilenet-v2:0.0.0-dev edgex-device-openvino-resnet
edgexfoundry/app-service-configurable:3.1.0 edgex-app-rules-engine
edgexfoundry/core-data:3.1.0 edgex-core-data
edgexfoundry/core-command:3.1.0 edgex-core-command
edgexfoundry/support-scheduler:3.1.0 edgex-support-scheduler
edgexfoundry/core-common-config-bootstrapper:3.1.0 edgex-core-common-config-bootstrapper
edgexfoundry/support-notifications:3.1.0 edgex-support-notifications
edgexfoundry/core-metadata:3.1.0 edgex-core-metadata
eclipse-mosquitto:2.0.18 edgex-mqtt-broker
edgexfoundry/edgex-ui:3.1.0 edgex-ui-go
redis:7.0.14-alpine edgex-redis
hashicorp/consul:1.16.2 edgex-core-consul
OpenVINO Model Server 日志
# docker logs -f model_server
model_server | [2024-04-11 04:29:29.941][131][serving][debug][kfs_grpc_inference_service.cpp:251] Processing gRPC request for model: ssdlite_mobilenet_v2; version: 1
model_server | [2024-04-11 04:29:29.941][131][serving][debug][kfs_grpc_inference_service.cpp:290] ModelInfer requested name: ssdlite_mobilenet_v2, version: 1
model_server | [2024-04-11 04:29:29.941][131][serving][debug][modelmanager.cpp:1519] Requesting model: ssdlite_mobilenet_v2; version: 1.
model_server | [2024-04-11 04:29:29.941][131][serving][debug][modelinstance.cpp:1054] Model: ssdlite_mobilenet_v2, version: 1 already loaded
model_server | [2024-04-11 04:29:29.941][131][serving][debug][predict_request_validation_utils.cpp:1035] [servable name: ssdlite_mobilenet_v2 version: 1] Validating request containing binary image input: name: image_tensor
model_server | [2024-04-11 04:29:29.941][131][serving][debug][modelinstance.cpp:1234] Getting infer req duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.022 ms
model_server | [2024-04-11 04:29:29.941][131][serving][debug][modelinstance.cpp:1242] Preprocessing duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.000 ms
model_server | [2024-04-11 04:29:29.941][131][serving][debug][deserialization.hpp:449] Request contains input in native file format: image_tensor
model_server | [2024-04-11 04:29:29.943][131][serving][debug][modelinstance.cpp:1252] Deserialization duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 2.492 ms
model_server | [2024-04-11 04:29:29.948][128][serving][debug][kfs_grpc_inference_service.cpp:251] Processing gRPC request for model: ssdlite_mobilenet_v2; version: 1
model_server | [2024-04-11 04:29:29.948][128][serving][debug][kfs_grpc_inference_service.cpp:290] ModelInfer requested name: ssdlite_mobilenet_v2, version: 1
model_server | [2024-04-11 04:29:29.948][128][serving][debug][modelmanager.cpp:1519] Requesting model: ssdlite_mobilenet_v2; version: 1.
model_server | [2024-04-11 04:29:29.948][128][serving][debug][modelinstance.cpp:1054] Model: ssdlite_mobilenet_v2, version: 1 already loaded
model_server | [2024-04-11 04:29:29.948][128][serving][debug][predict_request_validation_utils.cpp:1035] [servable name: ssdlite_mobilenet_v2 version: 1] Validating request containing binary image input: name: image_tensor
model_server | [2024-04-11 04:29:29.951][131][serving][debug][modelinstance.cpp:1260] Prediction duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 7.547 ms
model_server | [2024-04-11 04:29:29.951][131][serving][debug][modelinstance.cpp:1269] Serialization duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.226 ms
model_server | [2024-04-11 04:29:29.951][131][serving][debug][modelinstance.cpp:1277] Postprocessing duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.000 ms
model_server | [2024-04-11 04:29:29.951][131][serving][debug][kfs_grpc_inference_service.cpp:271] Total gRPC request processing time: 10.4070 ms
model_server | [2024-04-11 04:29:29.951][128][serving][debug][modelinstance.cpp:1234] Getting infer req duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 2.850 ms
model_server | [2024-04-11 04:29:29.951][128][serving][debug][modelinstance.cpp:1242] Preprocessing duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.000 ms
model_server | [2024-04-11 04:29:29.951][128][serving][debug][deserialization.hpp:449] Request contains input in native file format: image_tensor
model_server | [2024-04-11 04:29:29.953][128][serving][debug][modelinstance.cpp:1252] Deserialization duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 2.192 ms
model_server | [2024-04-11 04:29:29.961][128][serving][debug][modelinstance.cpp:1260] Prediction duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 7.519 ms
model_server | [2024-04-11 04:29:29.961][128][serving][debug][modelinstance.cpp:1269] Serialization duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.052 ms
model_server | [2024-04-11 04:29:29.961][128][serving][debug][modelinstance.cpp:1277] Postprocessing duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.000 ms
model_server | [2024-04-11 04:29:29.961][128][serving][debug][kfs_grpc_inference_service.cpp:271] Total gRPC request processing time: 12.787 ms
model_server | [2024-04-11 04:29:29.973][132][serving][debug][kfs_grpc_inference_service.cpp:251] Processing gRPC request for model: ssdlite_mobilenet_v2; version: 1
model_server | [2024-04-11 04:29:29.973][132][serving][debug][kfs_grpc_inference_service.cpp:290] ModelInfer requested name: ssdlite_mobilenet_v2, version: 1
model_server | [2024-04-11 04:29:29.973][132][serving][debug][modelmanager.cpp:1519] Requesting model: ssdlite_mobilenet_v2; version: 1.
model_server | [2024-04-11 04:29:29.973][132][serving][debug][modelinstance.cpp:1054] Model: ssdlite_mobilenet_v2, version: 1 already loaded
model_server | [2024-04-11 04:29:29.973][132][serving][debug][predict_request_validation_utils.cpp:1035] [servable name: ssdlite_mobilenet_v2 version: 1] Validating request containing binary image input: name: image_tensor
model_server | [2024-04-11 04:29:29.973][132][serving][debug][modelinstance.cpp:1234] Getting infer req duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.004 ms
model_server | [2024-04-11 04:29:29.973][132][serving][debug][modelinstance.cpp:1242] Preprocessing duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.000 ms
model_server | [2024-04-11 04:29:29.973][132][serving][debug][deserialization.hpp:449] Request contains input in native file format: image_tensor
model_server | [2024-04-11 04:29:29.976][132][serving][debug][modelinstance.cpp:1252] Deserialization duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 2.705 ms
model_server | [2024-04-11 04:29:29.983][132][serving][debug][modelinstance.cpp:1260] Prediction duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 7.461 ms
model_server | [2024-04-11 04:29:29.983][132][serving][debug][modelinstance.cpp:1269] Serialization duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.049 ms
model_server | [2024-04-11 04:29:29.983][132][serving][debug][modelinstance.cpp:1277] Postprocessing duration in model ssdlite_mobilenet_v2, version 1, nireq 0: 0.000 ms
model_server | [2024-04-11 04:29:29.983][132][serving][debug][kfs_grpc_inference_service.cpp:271] Total gRPC request processing time: 10.4050 ms
可以看到推理使用设备:Used device: CPU,也可以在 config.json 配置文件中修改为: AUTO 或 GPU
整个请求所花的时间:Total gRPC request processing time: 10.4050 ms,综合平均值,也就是10-15ms 之间,性能非常好。
推理结果
通过 Web MJPEG 方式实时查看推理结果。